Multipoint Schur’s algorithm, rational orthogonal functions, asymptotic properties and Schur rational approximation
نویسندگان
چکیده
In [20] the connections between the Schur algorithm, the Wall’s continued fractions and the orthogonal polynomials are revisited and used to establish some nice convergence properties of the sequence of Schur functions associated with a Schur function. In this report, we generalize some of Krushchev’s results to the case of a multipoint Schur algorithm, that is a Schur algorithm where all the interpolation points are not taken in 0 but anywhere in the open unit disk. To this end, orthogonal rational functions and a recent generalization of Geronimus theorem are used. Then, we consider the problem of approximating a Schur function by a rational function which is also Schur. This problem of approximation is very important for the synthesis and identification of passive systems. We prove that all strictly Schur rational function of degree n can be written as the 2n-th convergent of the Schur algorithm if the interpolation points are correctly chosen. This leads to a parametrization using the multipoint Schur algorithm. Some examples are computed by an L norm optimization process and the results are validated by comparison with the unconstrained L rational approximation. Key-words: multipoint Schur’s algorithm, rational orthogonal functions, Schur functions, Wall continued fraction, asymptotic properties, rational approximation Il s’agit de la seconde partie de la thèse de Vincent Lunot, soutenue le 05/05/08 in ria -0 03 11 74 4, v er si on 1 20 A ug 2 00 8 Algorithme de Schur multipoint, fonctions rationnelles orthogonales, propriétés asymptotiques et approximation rationnelle Schur Résumé : Dans [20] les relations entre l’algorithme de Schur, les fractions continues de Wall et les polynômes orthogonaux sont revisitées et utilisées pour établir certaines propriétés de convergence de la suite de Schur d’une fonction Schur. Dans ce rapport, certains résultats de Krushchev sont généralisés à l’algorithme de Schur multipoints, c’est-à-dire lorsque les points d’interpolation ne sont plus pris en 0 mais en n’importe quel point du disque unité ouvert. Pour cela, on fait appel aux fonctions rationnelles orthogonales et à une récente généralisation du théorème de Géronimus. On considère ensuite le problème de l’approximation rationnelle Schur d’une fonction Schur. Ce problème revêt une importance particulière dans le domaine de la synthèse et de l’identification de sytèmes passifs. On prouve que toute fonction rationnelle Schur de degré n peut être obtenue comme le 2n-ième convergent d’un algorithme de Schur dont les points d’interpolation sont convenablement choisis. Cela nous permet de construire un paramétrage des fonctions rationnelles strictement Schur fondé sur l’algorithme de Schur multipoints. Des exemples numériques sont traités par une procédure d’optimisation de la norme L et les résultats validés par comparaison avec l’approximation rationnelle L non-contrainte. Mots-clés : algorithme de Schur multipoint, fonctions rationnelles orthogonales, fonctions de Schur, fraction continue de Wall, propriétés asymptotiques, approximation rationnelle in ria -0 03 11 74 4, v er si on 1 20 A ug 2 00 8 Schur rational approximation 3
منابع مشابه
2 00 9 Multipoint Schur Algorithm and Orthogonal Rational Functions : Convergence Properties
Schur analysis plays an important role in the theory of orthogonal polynomials [40]. We are interested in the convergence properties of special systems of orthogonal (Wall) rational functions. This amounts to study the multi-point Schur algorithm rather than its classical (single-point) version. The approach of the paper is largely inspired by results of Khrushchev [22].
متن کامل0 D ec 2 00 8 MULTIPOINT SCHUR ALGORITHM AND ORTHOGONAL RATIONAL FUNCTIONS : CONVERGENCE PROPERTIES
Schur analysis plays an important role in the theory of orthogonal polynomials [29]. We are interested in convergence properties of multi-point Schur algorithm rather than its classical (single-point) version. The results of the paper are largely inspired by results of Khrushchev [15].
متن کاملWall rational functions and Khrushchev’s formula for orthogonal rational functions
We prove that the Nevalinna-Pick algorithm provides different homeomorphisms between certain topological spaces of measures, analytic functions and sequences of complex numbers. This algorithm also yields a continued fraction expansion of every Schur function, whose approximants are identified. The approximants are quotients of rational functions which can be understood as the rational analogs ...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملSchur-Nevanlinna sequences of rational functions
We study certain sequences of rational functions with poles outside the unit circle. Such kind of sequences are recursively constructed based on sequences of complex numbers with norm less than one. In fact, such sequences are closely related to the Schur-Nevanlinna algorithm for Schur functions on the one hand and on the other hand to orthogonal rational functions on the unit circle. We shall ...
متن کامل